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SUMMARY

We describe a new approach for developing new wall-laws for rough surfaces. We also give error estimates on a
simple model. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a number of important applications the domain occupied by the ¯uid has two scales. We shall

consider two such cases: 1, the ¯ow over a rough surface; 2, the ¯ow over a wavy sea surface. In case

1 it could be a badly polished ¯at plate or a surface with periodic ridges such as the tiles of a re-entry

vehicle or the effect of trees and buildings on a meteorological ¯ow.

It is not possible to discretize numerically both scales with suf®cient accuracy; a boundary

condition is sought which takes into account the roughness of the surface. The usual answer is given

by the law of the wall with a different b:

u� � 1

w
log y� � b

on a mean surface S above the wavy surface. This formula is used to establish a non-linear Frechet

boundary condition

u�n � 0;
u�sp�nTj@u=@nj�

ÿ 1

w
log d

r
1

nT

���� @u@n
����� �� �
� b � 0;

where nT is the turbulent viscosity. Here we wish to show that it could also be derived from another

generalized Frechet condition

nT�Hu� HuT�nÿ pn � snS � c�juj�u
which comes from domain decomposition and has nothing to do with wall laws.

In case 2 the surface drag of the wind on the wavy sea must be taken into account in meteorological
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air models and vice versa. A boundary condition of the type

ssnS � sanS � cjua ÿ usj�us ÿ us�

is proposed. Here again we want to show how domain decomposition can explain this condition.

This work is an extension of that of Carreau,1 Le Tallec2 and Achdou et al.3,9

2. ROUGH TERRAIN

Consider the Reynolds-averaged Navier±Stokes equations with a turbulence model for nT:

uHu� Hpÿ H��nT�Hu� HuT�� � 0; H�u � 0

on a domain Oe.

Let us seek a solution by domain decomposition2 (Figure 1). Let S//G and O�Oo [ Oi. Let ui be

the solution in Oi with u� v on S. Let uo be the solution in Oo with u� v on S. We have a solution to

the problem if v is such that normal stresses match:

si �n � so �n:

Now by de®nition of ui we know that the solution is a function of v, so its normal stress on the upper

wall is also a function of v:

si �n � F�v�:

Thus the continuity of s gives

so �n � F�uo�:

The trouble, however, is that F is in general a non-local operator.

2.1. Periodic irregularities

For periodic irregularities F becomes approximatively local, because the solution ui can be found

by translation of the solution u0 of a single-cell problem with only one irregularity at the lower

boundary, periodic conditions on the vertical boundaries and matching condition u0 � v at the top

boundary. Then this cell problem is solved for all values of v and a table is made of nT(Hui�HuT
i )

n7 pin)jS versus v. See Figure 2 for an example of a solution on such surfaces.

Figure 1. Domain decomposition for ¯ow over a rough surface
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2.2. Remark

Notice that by the divergence theorem and Green's theorem,�
@Oi

�nT�Hu� HuT�nÿ pn� �
�
Oi

fH��nT�Hu� HuT�� ÿ Hpg �
�
Oi

H��u
 u� �
�
@Oi

uu�n � 0:

Therefore

ÿ
�
@O\Oi

�nT�Hu� HuT�nÿ pn� �
�
S
�nT�Hu� HuT�nÿ pn�:

Thus F(u) is also the drag of the rough surface per unit length. This means that tabulations of F could

also be done experimentally.

3. OCEAN±ATMOSPHERE INTERFACE

Consider now a large domain O with air above and water below an interface S. The Reynolds-

averaged Navier±Stokes equations for O contain a variable density r(x, t) and a turbulent viscosity mT

which changes with the medium:

r�@tu� uHu� � Hpÿ H��mT�Hu� HuT�� � 0;

@tr� uHr � 0; H�u � 0:

Let us split O into three parts (Figure 3): 1, a thin domain Oi containing the interface; 2, the

remainder of O in water, Os; 3, the remainder of O in air, Oa. Ss and Sa are the boundaries between Oi

and Os, Oa respectively and ua and us are the velocities on these interfaces.

The solution in an in®nite horizontal slab Oi with u� ua on top and u� us on the bottom will be

close to the exact solution, because the effects of upstream and downstream errors decay

exponentially with the distance to these. Frame invariance can be utilized to put to zero one of the

Figure 2. 2D Navier±Stokes equation at Re� nÿ 1� 50
4

Figure 3. Domain decomposition for free surface ¯ow
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non-homogeneous boundary conditions: in the slab this changes {us, ua} into {0, ua7 us}. It shows

that the tabulation is to be a function of one parameter ua7 us and not the two independant

parameters {us, ua}. Now use again frame invariance to make the problem stationary in time. If all

surface waves travel at the same speed c, then use {ÿc, ua7 us7 c} as top and bottom boundary

conditions. Finally approximate the in®nite slab by periodic translations of a ®nite representative cell

C and tabulate

snjSa
� snjSs

� F�c; ua ÿ us�:

3.1. Remark on tabulations for waves

Consider the problem of ®nding F:

mT�Hu� HuT�nÿ pn � F��u�� on S;

where u is the solution of the Navier±Stokes equations with a turbulence model and varying density

and [.] denotes the jump across the interface. Integration by parts shows that the mean values on Sa

and So are equal to the mean jump of the same at the interface, which is also the drag of the wavy free

surface. In many engineering applications it is considered reasonable to take the drag proportional to

the square of the mean velocity, U2. In this case the formula of Lions5,13 is recovered:

mT�Hu� HuT�nÿ pn � j�u�jM�u� on S;

where M is a second-order tensor.

With this boundary condition the variational formulation in O7S, where S is the slab assimilated

to a line, is �
OÿS
�@tu� uHu�v� mT�Hu� HuT� : �Hv� HuT� ÿ

�
S

F�c; �u���v� � 0

for all v 2 J�Oÿ S�:

4. NUMERICAL TABULATION FOR A WAVY SURFACE

Carreau1 and Morisset6 tabulated the cell problem for a compressible ¯ow at high Mach number. We

reproduced their simulations at low Mach number with another code. The results are summarized in

Table I.

The geometry and ¯ow visualization are shown later in Figure 8.

Table I. Stress tensor versus Reynolds number, showing independence of mean stress w.r.t. height

Wall y� 0�01 y� 0�05 y� 0�1
Re� 16104 Tangential stress ÿ0�003179 ÿ0�003512 ÿ0�003115 ÿ0�002876

Normal stress 7�75155 7�93776 7�93790 7�93794

Re� 56104 Tangential stress ÿ0�004627 ÿ0�004872 ÿ0�003931 ÿ0�002728
Normal stress 7�75261 7�93822 7�93893 7�9390

Re� 16105 Tangential stress ÿ0�004858 ÿ0�005122 ÿ0�004326 ÿ0�002744
Normal stress 7�75147 7�93654 7�93776 7�93802

Re� 16106 Tangential stress ÿ0�003845 ÿ0�003876 ÿ0�004079 ÿ0�003008
Normal stress 7�75035 7�93501 7�93634 7�93653
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4.1. Test on a ¯at plate for laminar ¯ow

The previous analysis should work even in the limit of a ¯at plate whose irregularities tend to zero.

Then the periodic cell becomes a vertical line and the computational domain becomes a half-plane

above the ¯at plate. Thus the cell problem is obtained by dropping all tangential derivatives in the

Navier±Stokes equations:

ÿn@2
nu� @sp � 0:

The solution is a parabolic pro®le when @sp is constant:

u � @sp

2n
y2 � y

d
ÿ @sp

2n
d2 � ujy�d

� �
:

The relation between the normal derivative and itself is easy to ®nd:

n@nu� u
n
d
� @sp

2
d � 0:

This boundary condition has been tested on the ¯ow over a ¯at plate for two values of d, d�
0�01 and 0�1, with n� 0�003 (d� � d

p��@u=@y�nÿ1� � 0�01
p�106 � 0�2=9� � d6 0�14146103=3�

50d) (Figures 4±7). The numerical results show that it works for y� < 0�5, which is much less than

the values used for turbulent boundary layers at Re� 300 (i.e. n� 1=300, h� 1, u1� 1, where h is

the height of the computational domain).

Figure 4. Navier±Stokes solution with no slip (u� 0) on ¯at plate

Figure 5. Navier±Stokes solution with a laminar wall law and d� 0�1

Figure 6. Navier±Stokes solution with a laminar wall law and d� 0�1
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This small example also shows the limit of this wall law approach: it is a viscous matching and has

nothing to do with Prandtl's boundary layer analysis.

5. WALL LAWS AND LOW-Re CORRECTIONS

5.1. Smooth surface

Let us apply the same idea to the k±e model with low-Reynolds-number corrections:

mT � cmr
k2

e
; with Dt � @t � uD;

E � 1
2
jHu� HuTj2 ÿ 1

2
jH�uj2;

Dtk ÿ
sk

r
H��mTHk� � k

e
k
� 2

3
H�u

� �
� cm

k2

e
E;

Dteÿ
se
r
H��mTHe� � e c2

e
k
� 2c1

3cm
H�u

 !
� c1kE:

The low-Reynolds-number corrections are

c0m � fmcm; c01 � f1c1; c02 � f2c2;

fm � 1�ÿeÿ0�017ynÿ1
p

k� 1� 20�5 ne
k2

� �
;

f1 � 1� 0�05

fm

 !3

; f2 � 1ÿ enek
ÿ2

:

We are in fact in the same situation as for the laminar ¯at plate: two scales, one due to the strong

gradients in the normal direction and the other associated with the other gradients. Domain

Figure 7. Friction at wall as a function of x
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decomposition will give a boundary condition relating the velocity and its gradient on a border at a

small distance from the physical boundary.

As in the ¯at plate case, there are no lateral oscillations, so the cell problem is on a vertical line, i.e.

all tangential derivatives are dropped. In the stationary case an analytical solution is found; it is the

wall law when 5� yu�=n� � 50:

u

u�
� 1

w
log

yu�

n

� �
� b� y�

n
wu�2

@p

@s
:

Next eliminate u* by differentiating the log law:

1

u�
@u

@y
� 1

yw
� 1

wu�
@p

@s
;

giving

u�s � y w
@u�s
@n
ÿ @p
@s

� �
log

y2

n
w
@u�s
@n
ÿ @p
@s

� �� �
� b

� �
;

which, written at y� d, gives the required boundary condition.

Usually @p=@s is dropped because it is small compared with @u=@n, but in Reference 7 it is shown

that this terms helps capture recirculations numerically.

5.2. Turbulent ¯ow over a wavy surface

When the drag of a wavy surface is assumed proportional to u2, the domain decomposition

approach's answer to the same problem is

nT

@u

@n
� c�nT�ujuj:

However, the wall law being valid at the matching interface, this boundary condition could also be

used with u given by the law of the wall. It gives

u�2 � c�nT�u2 � c�nT�u�2
1

w
log d� � b

� �2

;

Figure 8. Mach lines (left) and zoom of centre part (right) for ¯ow over a rough boundary, used to compute Table I
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i.e.

b � c�nT�ÿ1=2 ÿ 1

w
log d�:

Thus the effect of the roughness is to change the value of c(nT) and hence to shift the value of b by

cwavy(nT)ÿ1=2 ÿ cflat�nT�ÿ1=2.

6. ERROR ESTIMATES

The main result8 compares the exact solution ue with the solution u0 above a mean surface S with a

Frechet boundary condition

kue ÿ u0kO0 C�ek@swk0;S � e3=2�;
where w is the solution of the cell problem which de®nes the constant in the Frechet boundary

condition. This result shows that the smooth arti®cial boundary S should be suf®ciently far from the

wavy boundary so as to have k@swk0;S � O�e1=2�, which is possible because w tends to a function

independent of s at in®nity.

6.1. Stokes Flow

For Stokes ¯ow the mean ¯ow away from the rough surface is found by

ÿnDu0 � Dp0 � 0; H�u0 � 0 in O;

ÿnhwi@nu0 � p0n� 1

e
u0 � 0 jon S; u0jG1

� g;

where the matrix w� {w1, w2, w3} has wi the solution of

ÿnDw� HZ � 0; H�w � 0;

with periodic conditions on the lateral boundaries, w� 0 on the lower boundary and on the upper

boundary S of the cell domain

ÿn@nw
i � Zin � Ei; with Ei

j � dij:

Because H�w� 0, we have that hwijS � 0, so that u0�n=0 on S.

For Navier±Stokes equations there is an interaction with the boundary layer which acts at the next

level. Thus at order one the decomposition is the same, but at order e3=2 the boundary condition is

non-linear, as will be shown in a future publication.
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